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The theory of elastic interaction of micrometer-sized axially symmetric colloidal particles immersed into
confined nematic liquid crystal has been proposed. General formulas are obtained for the self-energy of one
colloidal particle and interaction energy between two particles in arbitrary confined nematic liquid crystals with
strong anchoring condition on the bounding surfaces. Particular cases of dipole-dipole interaction in the
homeotropic and planar nematic cell with thickness L are considered and found to be exponentially screened on
far distances with decay length �dd= L

� . It is predicted that bounding surfaces in the planar cell crucially change
the attraction and repulsion zones of usual dipole-dipole interaction. As well it is predicted that the decay
length in quadrupolar interaction is two times smaller than for the dipolar case in the homeotropic cell.
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I. INTRODUCTION

Colloidal particles in nematic liquid crystals �NLC� have
attracted a great research interest during the last years. An-
isotropic properties of the host fluid-liquid crystal give rise to
a class of colloidal anisotropic interactions that never occurs
in isotropic hosts. The anisotropic interactions result in dif-
ferent structures of colloidal particles such as linear chains in
inverted nematic emulsions �1,2�, two-dimensional �2D�
crystals �3�, and 2D hexagonal structures at nematic air in-
terface �5,6�.

Study of anisotropic colloidal interactions has been made
both experimentally �2–9� and theoretically �10–16�. The
first theoretical approach was developed in �1,10� with help
of ansatz functions for the director and using multiple expan-
sion in the far field area. Another approach �11,12� gave
possibility to find approximate solutions in terms of geo-
metrical shape of particles. Recently, authors of �15,16� pro-
posed a method for finding elastic interaction between col-
loids based on the fixing of director field on the surface of
virtual sphere surrounding the real particle. The predicted
dipole-dipole forces are three times weaker and quadrupole-
quadrupole five times weaker than results of �10�. On the
other hand authors of �9� recently have measured experimen-
tally both interactions and found that experimental results are
in accordance with Lubensky et al. prediction �10� with
about 10% accuracy. This allows to justify assumptions of
�10� for spherical particles for infinite nematic liquid crystal.
In this paper, we suggest to generalize that approach for the
case of the confined nematic liquid crystals as practically
always NLC has to be confined with walls, cells or con-
tainers. In a broader context, understanding the elasticity-
mediated colloidal interactions in confined media is of great
importance not only in the field of regular thermotropic
liquid crystals, but also for understanding interactions in
more complex media with orientational order, for example,

in solutions of DNA, f-actin, and other biologically relevant
molecules. Up to now almost all experimental studies did
not take into account quantitatively confinement effects be-
sides the article of Vilfan et al. �4�. In that paper, authors
have found exponential screening effects for quadrupole-
quadrupole interaction between spherical particles in homeo-
tropic NLC cell. From our viewpoint, there was only one
theoretical approach for description of colloidal particles in
confined NLC performed in papers �13,14�.

In this paper, we propose the approach for quantitative
description of the axial colloidal particles in confined NLC.
This method enables to find self-energy of one colloidal par-
ticle and interaction energy between two particles in arbitrary
confined NLC with strong anchoring condition n��s�=0 on
the bounding surfaces. We apply general formulas to the par-
ticular cases of dipole-dipole and quadrupole-quadrupole in-
teraction in the homeotropic cell and to the dipole-dipole
interaction in the planar cell with thickness L.

II. GENERAL APPROACH

Consider axially symmetric particle of the size
0.1 �m÷10 �m, which may carry topological defects such
as hyperbolic hedgehog, declination ring, or boojums. Direc-
tor field far from the particle in the infinite LC has the form
nx�r�= p x

R3 +3c xz
R5 , ny�r�= p y

R3 +3c yz
R5 with p and c being di-

pole and quadrupole moment �we use another notation for c
with respect to the c̃ in �10�, so that our c= 2

3 c̃�. It was found
in �10� that p=�a2, c=−�a3 with a being the particle radius,
and, for instance, �=2.04, �=0.72 for hyperbolic hedgehog
configuration. In order to find energy of the system:
particle�s�+LC it is necessary to introduce some effective
functional Feff so that it is Euler-Lagrange �EL� equations
should have the above solutions. In the �10� it was found that
in the one constant approximation with Frank constant K the
effective functional has the form
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Feff = K� d3x� ��n��2

2
− 4�P�x���n� − 4�C�x��z��n�� , �1�

which brings Euler-Lagrange equations:

�n� = 4����P�x� − �z��C�x�� , �2�

where P�x� and C�x� are dipole- and quadrupole-moment
densities. For the infinite space the solution has the
known form: n��x�=�d3x�

1
	x−x�	

�−��� P�x��+����z�C�x���. If

we consider P�x�= p��x� and C�x�=c��x� this really brings
nx�r�= p x

R3 +3c xz
R5 , ny�r�= p y

R3 +3c yz
R5 .

In the case of confined nematic with the boundary condi-
tions n��s�=0 on the surface S, the solution of EL equation
has the form

n��x� = �
V

d3x�G�x,x���− ��� P�x�� + ����z�C�x��� , �3�

where G is the Green’s function �xG�x ,x��=−4���x−x��
for x ,x��V and G�x ,s�=0 for any s of the bounding sur-
faces. Consider N particles in the confined NLC, so P�x�
=
ipi��x−xi� and C�x�=
ici��x−xi�. Then substitution �3�
into Feff brings: Feff=Uself+Uinteraction where Uself=
iUi

self,
here Ui

self is the interaction of the i-th particle with the
bounding surfaces Ui

self=Udd
self+UdQ

self+UQQ
self. In general case,

the interaction of the particle with bounding surfaces �self-
energy part� takes the form

Udd
self = − 2�Kp2�����H�xi,xi��	xi=xi�

,

UdQ
self = − 4�Kpc������z�H�xi,xi��	xi=xi�

,

UQQ
self = − 2�Kc2�z�z������H�xi,xi��	xi=xi�

, �4�

where G�x ,x��= 1
	x−x�	

+H�x ,x�� and �xH�x ,x��=0 �we
excluded divergent part of self-energy from 1

	x−x�	
�.

Interaction energy Uinteraction=
i	jUij
int. Here Uij

int is
the interaction energy between i and j particles: Uij

int=Udd
+UdQ+UQQ

Udd = − 4�Kpp������G�xi,x j�� ,

UdQ = − 4�K�pc�������z�G�xi,x j�� + p�c������zG�xi,x j��� ,

UQQ = − 4�Kcc��z�z������G�xi,x j�� . �5�

Here unprimed quantities are used for particle i and primed
for particle j. Formulas �4� and �5� represent general expres-
sions for the self-energy of one particle �energy of interaction
with the walls� and interparticle elastic interactions in the
arbitrary confined NLC with strong anchoring conditions
n��s�=0 on the bounding surfaces. Below, we will apply
these expressions for particular cases of the nematic cell with
homeotropic and planar configurations.
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FIG. 1. �Color online� Log-log plots of the interaction potential in kT units as a function of the rescaled interparticle distance 
 /L. Here
particle’s radius a=2.2 �m, cell thickness L=7 �m, K=7 pN, p= p�=2.04a2, c=c�=0.2a3. Blue thick line 3 is quadrupole potential in
homeotropic cell, dashed thick line 4 is its power-law asymptotics �1 /
5. All thin lines are dipole potentials in planar cell. Coming
anticlockwise, purple line 1 is attraction along the direction �=40°, brown line 2 is along �=20°, red line 5 is along z axis �=0. Black thick
line 6 is dipole repulsion in homeotropic cell from Eq. �7� and the last green thin line 7 is repulsion along �= �

2 . Thin dashed line 8 is the
power-law asymptotics U= 4�Kp2
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III. APPLICATION

A. Interaction in the homeotropic cell with width L

Green’s function in this case has the form �17�,

Ghom
cell �x,x�� =

4

L


n=1





m=−



eim��−��� sin
n�z

L
sin

n�z�

L

�Imn�
	

L
�Kmn�
�

L
� . �6�

Here heights z ,z�, horizontal projections 
	 ,
� and Im ,Km
are modified Bessel functions. Then using of Eq. �5� brings
dipole-dipole interaction in the cell

Udd,hom
c =

16�Kpp�

L3 

n=1



�n��2sin
n�z

L
sin

n�z�

L
K0n�


L
� �7�

with 
 being the horizontal projection of the distance be-
tween particles. Similar quadrupole-quadrupole interaction
takes the form

UQQ,hom
c =

16�Kcc�

L5 

n=1



�n��4cos
n�z

L
cos

n�z�

L
K0n�


L
� . �8�

When both particles are located in the center of the cell
z=z�= L

2 we have Udd,hom
c = 16�Kpp�

L3 
n=1,odd
 �n��2K0� n�


L �
�see black thick line 6 on the Fig. 1�. In the limit of small
distance 
�L between particles it has asymptotic Udd,hom

c

→ 4�Kpp�

3 that is in agreement with standard

formula for the usual dipole-dipole interaction Udd

= 4�Kpp�
r3 �1–3 cos2 �� for �= �

2 . From the Fig. 1, it is clearly
seen that power-law behavior U�

1

3 is valid to the 
=1.2L.

For larger distances 
�1.2L, exponential decay takes place

Udd,r⇒=16�Kpp�
�2

L2
e−�
/L

�2L

so we have decay length for

dipole-dipole interaction �dd= L
� .

When both particles are located in the center of the
cell z=z�= L

2 , we have quadrupole interaction UQQ,hom
c

= 16�Kcc�
L5 
n=2,even

 �n��4K0� n�

L ��see thick blue line 3 on

the Fig. 1�. This coincides with the result of �14� if we
take � there to be equal �=2�Kc=−2��Ka3. Let us empha-
size that in �14�, the � remains unknown quantity. In the
limit of small distance 
�L between particles it has asymp-
totics UQQ,hom

c → 36�Kcc�

5 that is in agreement with standard

formula for the usual quadrupole-quadrupole interaction
UQQ=4�Kcc�

9–90 cos2 �+105 cos4 �

r5 for �= �
2 . This power-law be-

havior is valid to the distance 
=0.8L. For larger distance

�0.8L crossover to the exponential decay occurs
UQQ,r⇒=8�Kcc�� 2�

L �4 e−2�
/L

�L

. So we come to the following

prediction: decay length for quadrupole particles:�QQ= L
2�

=
�dd

2 is twice smaller than for dipole particles in the homeo-
tropic cell.

B. Interaction in the planar cell with thickness L

In order to find Green’s function for this case, let
us turn coordinate system �CS� of the homeotropic cell

CShom�x ,y ,z� round the y axis on � /2. Then we will have
CSplan �x̃ , ỹ , z̃� with transition matrix A: x=Ax̃ ,
x�=Ax̃� so that x= z̃ , y= ỹ , z=−x̃. Then Ghom�x ,x��
=Ghom�Ax̃ ,Ax̃��=Gplan�x̃ , x̃��. Omitting sign � we may write
Green’s function for planar cell in the CSplan with n � z and x
perpendicular to the cell plane �x� �0,L��

Gplan
cell �x,x�� =

4

L
· 


n=1





m=−



eim��−��� sin
n�x

L
sin

n�x�

L

�Imn�
	

L
�Kmn�
�

L
� , �9�

where heights x ,x�, horizontal projections 
	=�y2+z2 , 
�

=�y�2+z�2, tg�= y
z , tg��= y�

z�
and 
	 is less than 
�. Then

taking derivatives brings dipole-dipole interaction in the pla-
nar cell Udd,plan

c =−4�Kpp������Gplan
cell ,

Udd,plan
c =

16�Kpp�

L3 �F1 − F2 cos2 �� , �10�

where

F1 = 

n=1


�n��2

2
sin

n�x

L
sin

n�x�

L
�K0n�


L
� + K2n�


L
��

− �n��2cos
n�x

L
cos

n�x�

L
K0n�


L
� ,
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FIG. 2. �Color online� Blue thick line is the border of the attrac-
tion �inside� and repulsion �outside� zone for parallel dipoles in the
planar cell from Eq. �10�. Director n0 � z. Black thin line is the
parabola z= �y2

L . Dashed lines make angle �=arccos� 1
�3

� with z and
are borders of repulsion and attraction zone for unlimited nematic.
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F2 = 

n=1



�n��2sin
n�x

L
sin

n�x�

L
K2n�


L
� .

When both particles are located in the center of the cell
x=x�= L

2 , we have F1=
n=1,odd
 �n��2

2 �K0� n�

L �+K2� n�


L ��
−
n=2,even

 �n��2K0� n�

L � and F2=
n=1,odd

 �n��2K2� n�

L �

�F1
� 	0,F2
� 	0�. In the limit of small distance 
�L be-
tween particles, these functions have asymptotics F1→ L3

4
3

and F2→ 3L3

4
3 so that we come to the well known result

Udd= 4�Kpp�

3 �1−3 cos2 �� for 
�L. In the limit of big

distances 
�L, we have
F1
�

F2
�
=1− L

�
 +o� L

 � with accuracy 5%

already for 
=L. So for 
�L the radial component
of the force between particles may be written as

f
=−
�Udd,plan

c

�
 =− 16�Kpp�
L3 F2
� �
� · �1− L

�
 −cos2 �� so that dipole-
dipole interaction is attractive �f
	0� for −�c��	�c, �c

=arccos��1− L
�
 ��� L

�
 and is repulsive for �c	�	2�
−�c �if dipoles are parallel each other p= p� and vice versa if
p=−p��. In other words for 
�L dipole-dipole interaction is

attractive inside parabola z= �y2

L and is repulsive outside this
parabola �see Fig. 2�. All numerical calculations in the paper
were performed using Mathematica 6, and in all series we
used summation 
n=1

300.

IV. CONCLUSIONS

To conclude we have found general approach for
description of the axial colloidal particles of the size
0.1 �m÷10 �m in the confined NLC. The decay length
for dipole interaction is found to be twice more than for
quadrupole interaction in the homeotropic cell. In the planar
cell bounding surfaces crucially change attraction and re-
pulsion zones for the distances larger than 
c=0.5L where
crossover to the parabola z= �y2

L takes place, so that attraction
zone is inside this parabola and repulsive zone is outside
it. This approach has been successfully applied as well for
the interaction of one particle with the one homeotropic and
planar wall and for interaction between two particles near
such wall. These results will be published in the upcoming
paper �18�.
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